The pleasantness of sensory dissonance is mediated by musical style and expertise


Western musical styles use a large variety of chords and vertical sonorities. Based on objective acoustical properties, chords can be situated on a dissonant-consonant continuum. While this might to some extent converge with the unpleasant-pleasant continuum, subjective liking might diverge for various chord forms from music across different styles. Our study aimed to investigate how well appraisals of the roughness and pleasantness dimensions of isolated chords taken from real-world music are predicted by Parncutt’s established model of sensory dissonance. Furthermore, we related these subjective ratings to style of origin and acoustical features of the chords as well as musical sophistication of the raters. Ratings were obtained for chords deemed representative of the harmonic language of three different musical styles (classical, jazz and avant-garde music), plus randomly generated chords. Results indicate that pleasantness and roughness ratings were, on average, mirror opposites; however, their relative distribution differed greatly across styles, reflecting different underlying aesthetic ideals. Parncutt’s model only weakly predicted ratings for all but Classical chords, suggesting that listeners' appraisal of the dissonance and pleasantness of chords bears not only on stimulus-side but also on listener-side factors. Indeed, we found that levels of musical sophistication negatively predicted listeners' tendency to rate the consonance and pleasantness of any one chord as coupled measures, suggesting that musical education and expertise may serve to individuate how these musical dimensions are apprehended.

Scientific Reports, 9(1)
Fabian C. Moss
Fabian C. Moss
Research Fellow in Cultural Analytics

Fabian C. Moss is a Research Fellow in Cultural Analytics at University of Amsterdam (UvA). He was born in Cologne, Germany, and studied Mathematics and Educational Studies at University of Cologne, and Music Education (Major Piano) and Musicology at Hochschule für Musik und Tanz, Köln. He obtained is PhD in Digital Humanities from École Polytechnique Fédérale de Lausanne (EPFL). Working with large symbolic datasets of musical scores and harmonic annotations, he is primarily interested in Computational Music Analysis, Music Theory, Music Cognition, and their mutual relationship.