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I. Modeling in Computational Musicology

Amodel specifies

• the objects to study and their formal representations

• the (probabilistic) relations between those objects

As such, it is an attempt to abstract from or approximate a phenomenon, e.g. harmonic

progressions.

• V−→ I

• P(I | V) = p

(cf. Finkensiep, Neuwirth, and Rohrmeier, forthcoming)
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I. Modeling in Computational Musicology

Potential of model-based computational musicology

1. complementing music theory

2. resolving ambiguities in terminology

3. empirically validating theoretical assumptions

4. asking entirely new questions
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II. Ex. 2: Chord distributions

Studying chord distributions to approximate stylistic traits, e.g. in

• Western Classical music (Jacoby, Tishby, and Tymoczko, 2015;Moss, Neuwirth,

Harasim, and Rohrmeier, 2019)

• Rock (Temperley, 2018; Temperley and de Clercq, 2013)

• Pop (Burgoyne,Wild, and Fujinaga, 2011;Mauch et al., 2007)

• Jazz (Shanahan and Broze, 2012)

• Choro (Moss, Souza, and Rohrmeier, 2020)

• …
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II. Ex. 2: Chord distributions

Common (implicit) assumptions: n-gram orMarkovmodels:

p(ci | c1, . . . , ci−1) ≈ p(ci | ci−n+1, . . . , ci−1)

• unigrammodel: relative frequencies (n = 1)

• bigrammodel: transitions (n = 2)
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II. Ex. 2: Chord distributions

Unigram model: relation between chord rank and frequency often approximated with

Zipf-Mandelbrot law:

f̂(r) =
α

(β + r)γ

Figure 1: Frequency-rank distribution of chords in Beethoven’s string

quartets (major: blue, minor: red; Moss, Neuwirth, Harasim, and Rohrmeier,

2019).
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II. Ex. 2: Chord distributions

Bigram model: probabilities of chord transitions; conditional entropies

Figure 2: Transition probabilities in Beethoven’s string quartets (major: blue; minor: red).
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II. Ex. 2: Chord distributions

1. Chord progressions seem to be asymmetrical, e.g. V2−→ I6� I6−→V2

2. Chords with suspensions and applied chords (i.e., certain chord features) have

lower entropies

Comparing average entropies of randomly sampled chords to those with certain

features

Figure 3: Conditional entropies of chords with certain features (major: blue; minor: red).
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III. Ex. 2: Pitch-class distributions



III. Ex. 2: Pitch-class distributions

Theoretical (historical) models of tonal space

Figure 4: The Tonnetz (Hostinský, 1879).
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III. Ex. 2: Pitch-class distributions

Neo-Riemannian triadic transformations on the Tonnetz (Cohn, 1998)

• parallel (P)

C�CCC� CC
• relative (R)

CCCCC� C
• leading-tone exchange (L)

CCCCC� C

A] E] B] F]] C]] G]]

F] C] G] D] A] E]

A E B F] C] G]

F C G D A E

A[ E[ B[ F C G

PR

L

Figure 5: The Tonnetz.
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III. Ex. 2: Pitch-class distributions

• (extended) diatonic: ± P5

CC C CC� CC� � C C�
• octatonic: ±m3,± P5

CC�� CCC� CC C��
• hexatonic: ±M3,± P5

CC��CC� CC

+P5
G

+
m
3

E[
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+
M
3
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Figure 6: “Primary intervals” with respect to C.
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III. Ex. 2: Pitch-class distributions

diatonic
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Plots generated with the pitchplots Python library (Moss, Loayza, and Rohrmeier, 2019)
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III. Ex. 2: Pitch-class distributions

Functional interpretation of interval relations on the Tonnetz:

Figure 7: Different harmonic functions of B in relation to C.
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III. Ex. 2: Pitch-class distributions

TheTonal Diffusion Model –modeling assumptions:

1. all notes are related to a tonal center

2. relations are given by (combinations of) intervals on the Tonnetz

3. the probability of a pitch class to occur in a piece is a result of all path probabilities

to reach it from the tonal center (prefer shorter paths)

Details: Lieck, R., Moss, F. C., & Rohrmeier, M. (2020). The Tonal DiffusionModel. Transactions of the

International Society for Music Information Retrieval, 3(1), 153–164. https://doi.org/10.5334/tismir.46
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III. Ex. 2: Pitch-class distributions

1. inferred parameters reflect

characteristic intervals

2. tonal center is not identical to the

tonic

3. corpus-level comparison shows

that a ‘line-of-fifths model’ is

sufficient for Bach but TDM is

better for Beethoven and Liszt

(see paper)
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IV. Perspectives

Modeling in Computational Musicology

1. not new: established inMusic Information Retrieval andMathematical Music

Theory

2. modeling also beneficial for music theory andmusicology:

• clearly defining objects and their interrelations

• specifying assumptions that impact on analysis

3. potential for purely historical and theoretical approaches: understanding analysis

as inference, evaluating plausibility of models (“theories”)

4. probabilistic modeling & corpus-based approach can bridge between

mathematical abstractions (e.g. pc sets) andmusical data (e.g. pc distributions)

5. requires and facilitates reflection, critique, and interpretation
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Thank you very much!

Slides: http://www.fabian-moss.de

16/16

http://www.fabian-moss.de


References

Burgoyne, J. A., Wild, J., & Fujinaga, I. (2011). Compositional Data Analysis of Harmonic Structures in

PopularMusic (J. Yust, J. Wild, & J. A. Burgoyne, Eds.). In J. Yust, J. Wild, & J. A. Burgoyne (Eds.),

Mathematics and Computation in Music: 4th International Conference, MCM 2013.

https://doi.org/10.1007/978-3-642-21590-2
Cohn, R. (1998). Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective. Journal

of Music Theory, 42(2), 167–180.

Finkensiep, C., Neuwirth, M., & Rohrmeier, M. (forthcoming). Music Theory andModel-Driven Corpus

Research. In D. Shanahan, J. A. Burgoyne, & I. Quinn (Eds.),Oxford Handbook of Music and

Corpus Studies. Oxford University Press.

Hostinský, O. (1879).Die Lehre von den musikalischen Klängen: Ein Beitrag zur aesthetischen Begründung

der Harmonielehre. H. Dominicus.

https://doi.org/10.1007/978-3-642-21590-2


Jacoby, N., Tishby, N., & Tymoczko, D. (2015). An Information Theoretic Approach to Chord

Categorization and Functional Harmony. Journal of New Music Research, 44(3), 219–244.

https://doi.org/10.1080/09298215.2015.1036888
Lieck, R., Moss, F. C., & Rohrmeier, M. (2020). The Tonal DiffusionModel. Transactions of the International

Society for Music Information Retrieval, 3(1), 153–164. https://doi.org/10.5334/tismir.46
Mauch,M., Dixon, S., Harte, C. A., Casey,M., & Fields, B. (2007). Discovering chord idioms through Beatles

and Real Book songs. ISMIR 2007, Proceedings of the 8th International Conference on Music

Information Retrieval, Vienna, Austria, September 23-27, 255–258.

Moss, F. C., Loayza, T., & Rohrmeier, M. (2019). Pitchplots. https://doi.org/10.5281/ZENODO.3265393
Moss, F. C., Neuwirth, M., Harasim, D., & Rohrmeier, M. (2019). Statistical characteristics of tonal

harmony: A corpus study of Beethoven’s string quartets. PLoS ONE, 14(6), e0217242.

https://doi.org/10.1371/journal.pone.0217242
Moss, F. C., Souza,W. F., & Rohrmeier, M. (2020). Harmony and form in Brazilian Choro: A corpus-driven

approach to musical style analysis. Journal of New Music Research, 49(5), 416–437.

https://doi.org/10.1080/09298215.2020.1797109
_eprint: https://www.tandfonline.com/doi/pdf/10.1080/09298215.2020.1797109

https://doi.org/10.1080/09298215.2015.1036888
https://doi.org/10.5334/tismir.46
https://doi.org/10.5281/ZENODO.3265393
https://doi.org/10.1371/journal.pone.0217242
https://doi.org/10.1080/09298215.2020.1797109


Shanahan, D., & Broze, Y. (2012). A Diachronic Analysis of Harmonic Schemata in Jazz. In Proceedings of

the 12th International Conference on Music Perception and Cognition and the 8th Triennial

Conference of the European Society for the Cognitive Sciences of Music.

Temperley, D. (2018). The Musical Language of Rock. Oxford University Press.

https://doi.org/10.1093/oso/9780190653774.001.0001
Temperley, D., & de Clercq, T. (2013). Statistical Analysis of Harmony andMelody in RockMusic. Journal of

New Music Research, 43(2), 187–204. https://doi.org/10.1080/09298215.2013.839525

https://doi.org/10.1093/oso/9780190653774.001.0001
https://doi.org/10.1080/09298215.2013.839525

	I. Modeling in Computational Musicology
	II. Ex. 2: Chord distributions
	III. Ex. 2: Pitch-class distributions
	IV. Perspectives
	Appendix
	References


